03_Cantalice_et_al

Bonefish (Elopomorpha, Albuliformes) remains from Late Cretaceous outcrops of San Carlos Quarry, Coahuila, Northern Mexico: evidence of a new giant Teleost in the Western Interior Seaway

Restos de fósiles de Macabí (Elopomorpha, Albuliformes) del Cretácico Tardío en los depósitos marinos de la cantera San Carlos, Coahuila, en el norte de México: evidencia de un nuevo teleósteo gigante en el Mar Interior Occidental

Kleyton Magno Cantalice1,*, Hector Porras-Múzquiz2, Diogo de Mayrinck3,

Jesús Alvarado-Ortega1

1 Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México.

2 Museo de Paleontología de Múzquiz, Adolfo E. Romo 935, La Cascada, Melchor Múzquiz, Coahuila, 26343, México.

3 Laboratório de Ictiologia Aplicada: anatomia e evolução (LICTAE), Departamento de Ensino de Biologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Sala 504, Maracanã, Rio de Janeiro, RJ, 20550-013, Brasil.

* kleytonmc@geologia.unam.mx

ABSTRACT

The discovery of suspensorium bones, comprising the hyomandibular and metapterygoid, indicates the presence of a giant species belonging to the order Albuliformes in the Late Cretaceous outcrops of Northern Coahuila. The taxonomic designation in the order Albuliformes is due to the presence of the metapterygoid cup, a postero-dorsal concavity on the metapterygoid bone which, together with its articulation with the hyomandibular, composes the hyomandibular-metapterygoid fenestra. Although the function of this structure has been debated, its presence represents a diagnostic feature for both fossil and extant Albuliformes species. Comparing the hyomandibular-metapterygoid fenestra with other bonefish is evidence that this structure is quite variable inside the order. The hyomandibular length indicates that this specimen measured approximately 3.9 meters in length, which represents three times the size of †Farinichthys gigas, the largest bonefish known to date, collected in Paleocene outcrops from Brazil. This taxon represents a new giant form inside the Western Interior Seaway, which differs from the other large teleostean fishes of this ancient sea for being a secondary consumer.

Keywords: Albuliformes, Late Cretaceous, Coahuila, Mexico, Western Interior Seaway.

RESUMEN

En este trabajo se describen los huesos del suspensorio de un ejemplar fósil del orden Albuliformes recuperado en los depósitos marinos del Cretácico Tardío de la región norte de Coahuila. Aunque el ejemplar sólo conserva los huesos hiomandibular y el metapterigoides, éste muestra un rasgo diagnóstico de los albuliformes: la presencia de la fenestra hyomandibular-metapterigoides formada entre las mellas presentes en los bordes posterodorsal del metapterygoides (=metapterygoid cup) y anteroventral del hiomandibular. Aunque la función de esa estructura es discutible, su presencia representa una característica exclusiva observada en especies fósiles y vivientes del orden Albuliformes. La comparación de dicha fenestra observada en este fósil con las de otros Albuliformes revela dos rasgos peculiares en el ejemplar estudiado. Por un lado, los huesos hiomandibular y metapterigoides son de tamaño inusualmente grandes. A partir de estos huesos, es posible estimar que la longitud del individuo al que pertenecieron pudo ser cercana a 3.9 m, triplicando el tamaño del mayor albuliforme antes conocido, †Farinichthys gigas del Paleoceno de Brasil. Por otro lado, la fenestra hiomandibular-metapterygoides del ejemplar estudiado muestra una combinación peculiar de rasgos no observada en otros albuliformes, ésta es notablemente oblonga, aguda en ambos extremos y ventroposteriormente inclinada. Las presentes observaciones confirman que el fósil estudiado potencialmente representa una nueva especie albuliforme del Cretácico Tardío que vivió en la región limítrofe entre el sur del Mar Interior de Occidental y el norte del proto-Golfo de México, lo cual difiere de los demás teleósteos gigantes por ser un consumidor secundario en la cadena trófica.

Palabras clave: Albuliformes, Cretácico Tardío, Coahuila, México, Mar Interior Occidental.

1. Introduction

During the Cretaceous, the Earth’s geography and climate were different from today. The landmass had changed significantly during this period, and the average global temperature was higher than in the present day, precluding the formation of polar ice caps (Hay and Floegel, 2012). Therefore, the Cretaceous represents when the sea level was higher than in recent geological periods. As a result, the lands were flooded with marine waters from diverse epicontinental seas around the globe (Hay and Floegel, 2012; Scotese, 2014).

In North America, the Western Interior Seaway (WIS) was a large tectonically regulated epicontinental sea formed and extinguished by a series of transgressions and regressions of marine waters during the Cretaceous (Kauffman and Caldwell, 1993; Miall, 2009). The WIS was a relatively shallow sea that extended 4800 kilometers crossing from the current Arctic Ocean to the Gulf of Mexico, separating North America into two landmasses named Appalachia and Laramidia (Kaufmann, 1977, 1984; Cumbaa et al., 2010).

There is remarkable biodiversity reported to the WIS and its corresponding landmasses. Invertebrate fauna, for example, comprises bivalves, gastropods, cephalopods, crustaceans, and echinoderms. Vertebrates include cartilaginous and bony fishes, marine turtles, ichthyosaurs, plesiosaurs, pterosaurs, dinosaurs, among others (e.g., Russel, 1988; Cumbaa et al., 2013; Murray and Cook, 2016). Earliest paleontological studies concentrate on fossil localities in the United States of America (USA) and Canada (e.g., Cope, 1872; Hattin, 1975; Russel, 1988; Kirkland, 1989; Polcyn et al., 2008; Cumbaa et al., 2010; 2013; Underwood and Cumbaa, 2010; Bice et al., 2013; Murray and Cook, 2016); however, current studies in several Late Cretaceous outcrops of northern Coahuila de Zaragoza state have been revealing the paleontological potential of Mexico to understand the biodiversity distributed in the austral region of the WIS, close to the opening in the proto-Gulf of Mexico (Blanco-Piñón and Alvarado-Ortega, 2005; Stinnesbeck et al., 2005; Giersch et al., 2008; Alvarado-Ortega and Porras-Múzquiz, 2009; Riquelme et al., 2013; Stinnesbeck et al., 2023).

The marine fossil assemblage in these Mexican fossil beds comprises planktonic foraminifera, bivalves, ammonoids, crustaceans, chondrichthyans, actinopterygians, turtles, and mosasaurs (Blanco-Piñón & Alvarado-Ortega, 2005; Stinnesbeck et al., 2005; Giersch et al., 2008; Alvarado-Ortega and Porras-Múzquiz, 2009; Riquelme et al., 2013). The fossil diversity and geology of the Late Cretaceous marine localities from northern Coahuila de Zaragoza are poorly understood. The lithology is poorly known, and several taxa need identification. Here we describe a new teleost fish belonging to the order Albuliformes. Although incomplete, this specimen constitutes a new report of a bonefish and the largest albuliform fish documented until now; consequently, its discovery indicates the presence of giant teleost species inhabiting the WIS belonging to different trophic niches.

1.1. Area of study

The Múzquiz Lagerstätte is a series of outcrops belonging to both Eagle Ford and Austin groups ranging from the Turonian to Campanian (Stinnesbeck et al., 2005; Alvarado-Ortega et al., 2006; Ifrim et al., 2007; Alvarado-Ortega and Porras-Múzquiz, 2009; 2022; Riquelme et al., 2013; López-Conde et al., 2019). They are named Múzquiz Lagerstätte because of its proximity to the Melchor Múzquiz municipality (about 150 km) and its great diversity of fossils found, with several specimens showing an exceptional degree of preservation. The geological settings of these quarries are poorly understood, so the stratigraphic group and age are based mainly on the fossil record.

The specimen studied was collected in the San Carlos quarry, one of the fossil beds of the Múzquiz Lagerstätte that belonged to the Austin group. The San Carlos quarry is in 29°04′11″N and 100°47′12″W coordinates, near Jimenez municipality, northern Coahuila de Zaragoza. According to previous studies (i.e., Carrasco, 1963; Piedad-Sánchez et al., 2011; López-Conde et al., 2019), the Austin Group in Jimenez is divided into two distinct members belonging to the Campanian and named La Dessau and Los Tecolotes. Here, the fossil record comes from the Los Tecolotes member, dated of the Campanian based on the presence of the ammonites †Scaphites hippocrepis DeKay, 1828 and †Delawarella delawarensis Collignon, 1948 (Carrasco, 1969; Silva-Martínez et al., 2014; López-Conde et al., 2019).

The San Carlos quarry consists of parallel laminate strata ranging between 20 to 100 cm thick and comprising siltstone and reddish-brown shale, interleaved with yellowish-gray marls. Thin anhydrite layers of about 3 cm are occasionally present. Only one turtle fossil, †Desmatochelys cf. lowi Williston, 1894, and teleost fragments belonging to the order Tsefaltiiformes have been reported from the San Carlos quarry (López-Conde et al., 2019; Stinnesbeck et al., 2023, fig.1); however, several other species need identification, such as mollusks, crustaceans, sharks, and bony fishes (Piedad-Sánchez et al., 2011, personal observation). The environment of the San Carlos quarry is tentatively assigned to a regressive sedimentary deposit of marine origin on a shallow shelf near the coast (Piedad-Sánchez et al., 2011).

2. Materials and methods

The unique specimen (MUZ-3915) is conserved in part and counterpart in a yellowish stratum about 40 cm thick. This specimen is currently housed at the Museo de Paleontología de Múzquiz [Paleontological Museum of Múzquiz], at Melchor Múzquiz municipality, Coahuila de Zaragoza State, northern Mexico. Measures were performed using a digital dial caliper and photographs with a Nikon DSLR D5500. The free softwares GIMP v. 2.10.32 and Inkscape v.1.2 were used for the image edition and line drawings.

The anatomical interpretation follows that of Forey (1973). The comparative material comprises the unique specimen of †Nunaneichthys mexicanus Hernández-Guerrero, Cantalice, González-Rodríguez, and Bravo-Cuevas, 2021 (UAHMP-4232), housed at the Museo de Paleontología of the Universidad Autónoma del Estado de Hidalgo [Museum of Paleontology of the Autonomous University of Hidalgo State]; 12 specimens of †Macabi tojolabalensis L-Recinos, Cantalice, Caballero-Viñas, and Alvarado-Ortega, 2023 (IGM 13105 to IGM 13116) housed at Colección Nacional de Paleontología [National Collection of Paleontology] of the Universidad Nacional Autónoma de México [Autonomous National University of Mexico] (CNP-UNAM); and finally, one dry skeleton of the living species Albula vulpes (Linnaeus, 1758) (CRM-1246), from Paraíba State, Northeast Brazil, and housed at the extant specimen section of the CNP-UNAM. Data about other Albuliformes have been taken from the literature (e.g., Woodward, 1893; Ridewood, 1904; Blake, 1940; Estes, 1969; Forey, 1973; Forey et al., 1996, 2003; Filleul, 2001; Gallo and Figueiredo, 2002; Forey and Maisey, 2010; Mayrinck et al., 2010; Figueiredo et al., 2012; Bartholomai, 2013; Taverne and Capasso, 2018; Hernández-Guerrero et al., 2021; L-Recinos et al., 2023).

3. Results

3.1. Systematic Paleontology

Infraclass Teleostei Müller, 1845

Super cohort Teleocephala De Pinna, 1996

Cohort Elopomorpha Greenwood, Rosen, Weitzman, and Myers, 1966

Order Albuliformes Greenwood, Rosen, Weitzman, and Myers, 1966

Albuliformes incertae sedis

Referred specimen. MUZ-3915; part and counterpart (Figure 1).

Locality and horizon. San Carlos quarry, 29°04′11″N, and 100°47′12″W, at Jimenez municipality, Coahuila de Zaragoza, northern Mexico. This fossil bed belongs to the Campanian strata of the Austin Group.

3.2. Description

The metapterygoid (mpt) is inclined and presents a concavity on its anteroventral border. The ventral border is semi-circular and medially presents several grooves. Posteriorly, the ventral edge of the metapterygoid covers the anterior crest (an.c) of the hyomandibular (Figure 2). Above this region is the metapterygoid cup (mpt.cup), a concavity of this bone commonly found in Elopomorpha (Forey, 1973). Like in Albuliformes, this structure in MUZ-3915 forms a fenestra (Figure 2A, C); the hyomandibular-metapterygoid fenestra (hy-mpt.f), which according to Forey (1973), is for the passage of the levator arcus palatine muscle to insert upon the medial face of the metapterygoid (see discussion). The dorsal edge of the metapterygoid is prolonged and exceeds the articulation with the hyomandibular (Figure 2C). At least four grooves are discernible running along this region.

The hyomandibular is cross-shaped and is larger than the metapterygoid (Figure 1). The anterior edge is projected, forming the facet for articulation with the metapterygoid (mpt.fc), which composes the dorsal limit of the hyomandibular-metapterygoid fenestra (Figure 2). The dorsal border of the hyomandibular articulates the suspensorium with the neurocranium. In the specimen studied, the anterodorsal (ad.p) and posterodorsal (pd.p) projections are separated by a shallow groove. The opercular projection (op.p) is posterior, articulating the hyomandibular and the opercle. The ventral edge of the hyomandibular (v.p) is prolonged and presents a well-developed anterior groove, named preopercular groove (pop.g). The ventral border of the hyomandibular is covered by the posterior portion of the metapterygoid, forming the ventral border of the hyomandibular-metapterygoid fenestra.

3.3. Remarks

In addition to the specimen described herein, bonefishes distributed inside the WIS domains include members of the extinct subfamily †Phyllodontinae, composed of three genera, †Casierus Estes, 1969, †Phyllodus Agassiz, 1843 and †Paralbula Blake, 1940, which are recognized by fragmented tooth plates from the Late Cretaceous of USA and Canada (e.g., Estes, 1969; Applegate, 1970; Cumbaa et al., 2010, 2013; Murray and Cook, 2016). The best-preserved fossil Albuliformes in the WIS is the species †Albula dunklei, from Mooreville Shalk of the Selma Formation, Late Cretaceous (Santonian to Campanian) of Alabama (Applegate, 1970) and †Deltaichthys albuloides, from the Upper Cretaceous of Eagle Ford formation, Texas (Fielitz and Bardack, 1992).

The genera †Casierus, †Phyllodus, and †Paralbula are represented by tooth plates (e.g., Estes, 1969, Cumbaa et al., 2013), a structure not observed in the specimen here analyzed. †Albula dunklei is also not compared with the presented fossil due to the lack of suspensorium bones. The preserved material includes the middle portion of the body (including the pectoral-fin girdle) and several scales, vertebrae, and isolated head bones (Applegate, 1970). On the contrary, †D. albuloides is a nearly complete and three-dimensional species that preserves both hyomandibular and metapterygoid bones (Fielitz and Bardack, 1992); however, the configuration is distinct from that found in the albuliform specimen of the San Carlos quarry (see discussion). All these features indicate that the albuliform from the San Carlos quarry should represent a new bonefish species; however, due to the absence of more detailed morphological evidence, this result should be considered preliminary to the precise taxonomic assignation. At this moment, the present fossil described is an albuliform incertae sedis.

4. Discussion

4.1. The hyomandibular-metapterygoid fenestra in bonefishes

The presence of a hyomandibular-metapterygoid fenestra was first observed by Forey (1973) as a feature present in †Osmeroides latifrons Woodward, 1907, and the subfamilies Albulinae and Pterothrissinae. Currently, it is considered a diagnostic character to the order Albuliformes (Hernández-Guerrero et al., 2021); however, there are several fossil species in which this structure is not observed due to the poor state of preservation, such as in all the subfamily Phyllodontidae (Estes, 1969) and †Macabi tojolabalensis (L-Recinos et al., 2023).

The hyomandibular-metapterygoid fenestra is for­med by the connection with the metapterygoid and the hyomandibular, together with the posterodorsal concavity of the metapterygoid (the mpt. cup), which, according to Forey (1973), passes a deep division of the levator arcus palatine muscle to insert upon the medial face of the metapterygoid (Forey, 1973, p. 132). Although this hypothesis is widely accepted, Figueiredo et al. (2012) stated that there is a membrane covering the hyomandibular-metapterygoid fenestra in extant Albuliformes, indicating that neither muscle nor nerves passed through this structure. These authors pointed out that this structure should be a transformation to reduce the pressure of the suspensorium when crushing their prey, an adaptation to the durophage feeding habit (Figueiredo et al., 2012).

The presence or absence of muscle fibers through the hyomandibular-metapterygoid fenestra will be elucidated through a noninvasive morphological analysis of extant species, which is outside the scope of this work. Nevertheless, we corroborate the correlation between the hyomandibular and metapterygoid bones (and the hyomandibular-metapterygoid fenestra shape) with the feeding habitat (Figueiredo et al., 2012) since it is notable the inter-specific variation of this structure (Figure 3).

In general, the hyomandibular-metapterygoid fe­nestra is larger in living species. Furthermore, in extant species of Albula and Pterothrissus, the dorsal border of the metapterygoid is directed to the posterior region of the body, and the anterior edge of the metapterygoid is expanded. Within the fossil record, the species †Nunaneichthys mexicanus presents the smallest fenestra (Hernández-Guerrero et al., 2021). The hyomandibular and the fenestra shape of the species described herein resemble those of †Farinichthys gigas and †Deltaichthys albuloides, except for the hyomandibular in †F. gigas, which seems less developed (Gallo and Figueiredo, 2002). On the contrary, in †D. albuloides, the metapterygoid bone presents a reduced anterodorsal border, and the hyomandibular-metapterygoid fenestra is more developed (Figure 3D).

The species †Baugeichyhys caeruleus shows a different configuration of the hyomandibular and metapterygoid bones compared with other albuliform taxa (Figure 3). The ventral branch of the hyomandibular is straight, and the metapterygoid cup is dorsally positioned and not on the posterodorsal edge. The metapterygoid cup in the dorsal position is also noted in extant members of the order Elopiformes, such as Megalops cyprinoides (Forey, 1973). The albuliform from the San Carlos quarry, like other Mesozoic bonefishes, presents a small hyomandibular-metapterygoid fenestra, which indicates a modification of this structure in bonefishes during the Cenozoic.

4.2. The Giant Bonefish

Extant members of the order Albuliformes are not large species compared to other Elopomorphs, such as Megalops cyprinoides (Forey, 1973). The maximum length reported is 105 cm for an Albula vulpes species (Nelson et al., 2016). The best-preserved albuliform fossil taxa also are not large, except by †Farinichthys gigas from the marine Paleocene outcrops of Maria Farinha Formation, Northeastern Brazil (Gallo and Figueredo, 2002). This species was described based on incomplete and semi-articulated fossils and considered the largest bonefish (Gallo and Figueiredo, 2002), reaching more than 1.30 meters (cf.F. gigas is probably 23% larger than the extant species) (Figure 4).

Correlating the hyomandibular length of Albula vulpes, †Farinichthys gigas, and the species herein described, it indicates that the bonefish from the San Carlos quarry reaches about 3.9 meters in length (Figure 4). This feature implies that Mesozoic Bonefishes were bigger than Cenozoic species and, in the WIS, this group was three times longer in the maximum length compared to †F. gigas. Representing, thus, the largest albuliform fish reported to date.

4.3. A new giant species inside the Western Interior Seaway

Giant Albuliformes fishes are rare; however, large organisms are common inside the Western Interior Seaway. Giant bivalves inoceramids, such as †Volviceramus grandis Stoliczka, 1871, †Cladoceramus undulatoplicatus (Roemer, 1852), †Platyceramus platinus (Logan, 1898) were abundant inside the WIS domains. Another common giant invertebrate that lived in the WIS was the cephalopod †Tusoteuthis longa Logan, 1898, a squid that may have measured eight to 20 meters long. These invertebrates probably composed the main food source of the specimen herein described since extant Albuliformes are secondary predators, which usually prey on shelled invertebrates (Cumbaa et al., 2013).

Giant cartilaginous fishes include the top predator †Cretoxyrhina mantelli (Agassiz, 1835), which could reach about 7 meters in length; and †Ptychodus polygyrus Agassiz, 1835, a durophage hybodontiform shark with about 10 meters (Shimada, 1997; Hamm, 2010). A giant sarcopterygian fish, †Megalocoelacanthus dobiei Schwimmer, Stewart, and Williams, 1994, the largest coelacanth known to date with about 3 meters, also inhabits the WIS (Schwimmer et al., 1994). Giant teleost fishes are more diverse in this ancient sea and include †Xiphactinus audax Leidy, 1870, †Gillicus arcuatus Hay, 1898, †Saurodon leanus Hays, 1830, †Ichthyodectes ctenodon Cope, 1870, Bonnerichthys gladius (Cope, 1873), and Pachyrhizodus caninus (Russel, 1988; Alvarado-Ortega and Porras-Múzquiz, 2009; Friedman et al., 2010; Shimada, 2015). Except for †B. gladius, which is a plankton-feeder fish reaching about 16 meters, the other giant teleostean fishes are piscivore top predators (Friedman et al., 2010; Shimada, 2015; Table 1).

Although the teeth are not observed in the present described species, the presence of molariform teeth in the parasphenoid and the branchial apparatus is a common feature present in members of the order Albuliformes, which allows these groups to consume hard-shelled organisms. This species, therefore, represents an important complement to understanding the different trophic niches occupied by teleost fishes inside the WIS domains.

5. Conclusion

A new Mesozoic albuliform from the San Carlos quarry, Coahuila state, northern Mexico is described. Although incomplete, the presence of the hyomandibular-metapterygoid fenestra allows us to recognize this species as a bonefish. The correlation between the size of the bones preserved in this new taxon and other albuliform taxa indicates that the new species herein reported reaches about 3.9 meters in length, which represents the largest bonefish known to date. Giant teleost fishes are common inside the WIS domains, however, are represented mainly by piscivore taxa and one planktivorous. Since albuliforms are adapted to the durophage feeding habit, it is suggested that the taxon reported herein represents a complement of the trophic niche occupied by the teleost inside this remarkable extinct sea.

Acknowledgments

Thanks to the quarry workers from the San Carlos quarry for donating the specimen studied. Thanks to Juanita Maria Robles Herrera for giving us access to the material. Thanks to Stephany Pacheco Ordaz for helping with the material cataloging. Thanks to Oliver Ariel López Conde for discussion about vertebrate gigantism in the WIS domains. Thanks to the two anonymous reviewers and Sandra Ramos who improved the final version of the manuscript. This work was financially supported through the grants DGAPA-PAPIIT IA206123 and IN119020.

References

Agassiz, L. (1835). Rapport sur les poissons fossiles découverts depuis la publication de la troisième livraison. In Feuilleton additionel sur les Recherches sur les poissons fossiles. Quatrième livraison (Janvier 1835). Imprimerie de Petitpierre et Prince (text), Neuchatel, 39–64.

Agassiz, L. (1843). Recherches sur les poissons fossiles. Tome II, Contenant l’Histoire de l’Ordre des Ganoides. Imprimerie de Petitpierre, Neuchatel, 336 p.

Alvarado-Ortega, J., & Porras-Múzquiz, H. (2009). On the occurrence of Gillicus arcuatus (Cope, 1875) (Pisces, Ichthyodectiformest†) in Mexico. Boletín de la Sociedad Geológica Mexicana, 61(2), 215–224. http://dx.doi.org/10.18268/BSGM2009v61n2a9

Alvarado-Ortega, J., & Porras-Múzquiz, H. (2022). On the presence of Xiphactinus (Teleostei, Ichthyodectiformes) in the Coniacian-Campanian marine deposits of the Piedritas site, Coahuila, northern Mexico. Revista Mexicana de Ciencias Geologicas, 39(2), 142–150. https://doi.org/10.22201/cgeo.20072902e.2022.2.1684

Alvarado-Ortega, J., Blanco-Piñón, A., & Porras-Múzquiz, H. (2006). Primer registro de Saurodon (Teleostei: Ichthyodectiformes) en la cantera La Mula, Formación Eagle Ford (Cretácico Superior: Turoniano), Múzquiz, Estado de Coahuila, México. Revista mexicana de ciencias geológicas, 23(1), 107–112. http://www.rmcg.unam.mx/index.php/rmcg/article/view/829

Applegate, S. P. (1970). The vertebrate fauna of the Selma Formation of Alabama. Part III, The Fishes. Fieldiana: Geology Memoris, 3(8), 389–433.

Bartholomai, A. (2013). New teleosts (Elopomorpha: Albuliformes) from the Lower Cretaceous (Late Albian) of the Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum - Nature, 58, 73–94. https://doi.org/10.17082/j.2204-1478.58.2013.2013-09

Bice, K. N., Shimada, K., & Kirkland, J. I. (2013). Late Cretaceous marine fishes from the upper Greenhorn Limestone in southeastern Nebraska. Kansas Academy of Science, Transactions, 116(l–2), 22–26. https://www.jstor.org/stable/42637225

Blake, S. F. (1940). Paralbula, a new fossil fish based on dental plates from the Eocene and Miocene of Maryland. Journal of the Washington Academy of Sciences, 30(5), 205–209. https://www.jstor.org/stable/24529724

Blanco-Piñón, A., & Alvarado-Ortega, J. (2005). Fishes from La Mula quarries, a new Late Cretaceous locality from the vicinity of Múzquiz, Coahuila, NE Mexico. In Arratia, G., Schultze, H.-P., and Wilson, M. V. H. (Eds.), Mesozoic Fishes 4 – Homology and Phylogeny (pp. 37–41). Verlag Dr. Friedrich Pfeil, München.

Carrasco, B. V. (1963). Estratigrafía de la parte Superior del Grupo Austin en Jiménez Coahuila (México). Revista del Instituto Mexicano del Petróleo, 1(2), 18–25.

Carrasco, V. B. (1969). Amonitas del Campaniano inferior del norte de Coahuila. Boletín de la Sociedad Geológica Mexicana, 30(2), 139–154. http://dx.doi.org/10.18268/BSGM1967v30n2a2

Collignon, M. (1948). Ammonites Neocrètaceès du Menabe (Madagascar) I. Les Texanitidae (part 1 and 2). Annales Geologiques Service des Mines, Gouvernement Général de Madagascar. Fasc. 13, 85-19, lim. 7, 12, 15; Fasc. 14, 34-36, lam. 31.

Cope, E. D. (1870). On the Saurodontidae. Proccedings of the American Philosiphical Society, 11(81), 529–548. https://www.jstor.org/stable/981509

Cope, E. D. (1872). On the families of fishes of the Cretaceous Formation of Kansas. Proceedings of the American Philosophical Society, 12(81), 327–357. https://biostor.org/reference/202550

Cope, E. D. (1873). On two new species of Saurodontidae. Proceedings of the Academy of Natural Sciences of Philadelphia, 25, 337–339.

Cumbaa, S. L., Shimada, K., & Cook, T. D. (2010). Mid-Cenomanian vertebrate faunas of the Western Interior Seaway of North America and their evolutionary, paleobiogeographical, and paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1–2), 199–214. https://doi.org/10.1016/j.palaeo.2010.05.038

Cumbaa, S. L., Underwood, C. J., & Schröder-Adams, C. J. (2013). Paleoenvironments and paleoecology of the vertebrate fauna from a Late Cretaceous marine bonebed, Canada. In Arratia, G., Schultze, H.-P. and Wilson, M.V.H. (Eds.), Mesozoic Fishes 5—Global Diversity and Evolution (pp. 509–524). Verlag Dr. Friedrich Pfeil, Munich.

Dekay, J. E. (1828). Report on several multilocular shells from the state of Delaware; with observations of a second specimen of the new fossil genus Eurypterus. Annals of the Lyceum of Natural History of New York, 2, 273–279.

De Pinna, M. C. (1996). Teleostean monophyly. In Stiassny, M. L. J., Parenti, L. R., and Johnson G. D. (Eds.), Interrelationships of fishes (pp. 147–162). Academic Press, San Diego. https://doi.org/10.1016/B978-012670950-6/50008-4

Estes, R. (1969). Studies on fossil phyllodont fishes: interrelationships and evolution in the Phyllodontidae (Albuloidei). Copeia, 2(Jun. 3), 317–331. https://doi.org/10.2307/1442082

Fielitz, C., & Bardack, D. (1992). Deltaichthys albuloides, a new and unusually preserved albulid (Teleostei) probably from the Cretaceous of Texas. Journal of Vertebrate Paleontology, 133–141. https://www.jstor.org/stable/4523434

Figueiredo, F. J., Gallo, V., & Leal, M. E. C. (2012). Phylogenetic relationships of the elopomorph fish †Paraelops cearensis Silva Santos revisited: Evidence from new specimens. Cretaceous Research, 37, 148–154. https://doi.org/10.1016/j.cretres.2012.03.012

Filleul, A. (2001). Baugeichthys caeruleus, gen. et sp. nov., a New Albuliform Fish from the Hauterivian of the Massif Des Bauges (France). Journal of Vertebrate Paleontology, 20(4), 637–644. https://www.jstor.org/stable/4524144

Forey, P. L. (1973). A revision of the Elopiform fishes, fossil and recent. Bulletin of the British Museum of Natural History (Geology), 10, 1–222.

Forey, P. L., & Maisey, J. G. (2010). Structure and relationships of †Brannerion (Albuloidei), an Early Cretaceous teleost from Brazil. In J. S. Nelson, H.-P. Schultze, & M. H. V. Wilson (Eds.), Origin and Phylogenetic Interrelationships of Teleosts (pp. 183–218). Verlag Dr. Friedrich Pfeil.

Forey, P. L., Littlewood, D. T. J., Ritchie, P., & Meyer, A. (1996). Interrelationships of elopomorph fishes. In Stiassiny, M. L. J., Parenti L. R. and Johnson G. D. (Eds.), Interrelationships of fishes (pp. 175–191). Academic Press, San Diego. https://doi.org/10.1016/B978-012670950-6/50010-2

Forey, P. L., Yi, L., Patterson, C., & Davies, C. E. (2003). Fossil fishes from the Cenomanian (Upper Cretaceous) of Namoura, Lebanon. Journal of Systematic palaeontology, 1(4), 227–330. https://doi.org/10.1017/S147720190300107X

Friedman, M., Shimada, K., Martin, L. D., Everhart, M. J., Liston, J., Maltese, A., & Triebold, M. (2010). 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science, 327(5968), 990–993. https://doi.org/10.1126/science.1184743

Gallo, V., & Figueiredo, F. J. (2002). Farinichthys gigas, a new albulid fish (Teleostei: Elopomorpha) from the Paleocene of the Pernambuco-Paraíba Basin, northeastern Brazil. Journal of Vertebrate Paleontology, 22(4), 747–758. https://doi.org/10.1671/0272-4634(2002)022[0747:FGANAF]2.0.CO;2

Giersch, S., Frey, E., Stinnesbeck, W., & Gonzáles-Gonzáles, A. H. (2008). Fossil fish assemblages of northeastern Mexico: New evidence of Mid Cretaceous Actinopterygian radiation [Abstract]. In 6th Meeting of the European Association of Vertebrate Paleontologists, Muzeum Spisa, Spisská Nová Ves, Slovak Republic, Abstracts Volume, pp. 43–45.

Greenwood, P. H., Rosen, D. E., Weitzman, S. H., & Myers, G. S. (1966). Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History, 131, 339–456. http://hdl.handle.net/2246/1678

Hamm, S. A. (2010). The Late Cretaceous shark, Ptychodus rugosus, (Ptychodontidae) in the Western Interior Sea. Transactions of the Kansas Academy of Science, 113(1/2), 44-55. https://doi.org/10.1660/062.113.0203

Hattin, D. E. (1975). Stratigraphy and Depositional Environment of Greenhorn Limestone (Upper Cretaceous) of Kansas. Kansas Geological Survey Bulletin, 209, 128 p.

Hay, W. W., & Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth-Sciences Reviews, 115, 262–272. http://dx.doi.org/10.1016/j.earscirev.2012.09.008

Hays, I. (1830). Description of a fragment of the head of a new fossil animal, discovered in a marl pit, near Moorestown, New Jersey. Transactions of the American Philosophical Society, 3, 471–477. https://doi.org/10.2307/1005151

Hay, O. P. (1898). Notes on species of Ichthyodectes, including the new species 1. cruentus, and on the related and herein established genus Gillicus. American Journal of Science, 6(33), 225.

Hernández-Guerrero, C., Cantalice, K. M., González-Rodríguez, K. A., & Bravo-Cuevas, V. M. (2021). The first record of a pterothrissin (Albuliformes, Albulidae) from the Muhi Quarry, mid-Cretaceous (Albian-Cenomanian) of Hidalgo, central Mexico. Journal of South American Earth Sciences, 107, 103032. https://doi.org/10.1016/j.jsames.2020.103032

Ifrim, C., Stinnesbeck, W., & Frey, E. (2007). Upper Cretaceous (Cenomanian-Turonian and Turonian-Coniacian) open marine plattenkalk deposits in NE Mexico. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 245(1), 71–81. http://dx.doi.org/10.1127/0077-7749/2007/0245-0071

Kauffman, E. G. (1977). Geological and biological overview: western interior Cretaceous basin. The Mountain Geologist, 14, 75–99.

Kauffman, E. G. (1984). Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In Westermann, G. E. G. (Ed.), Jurassic-Cretaceous Biochronology and Paleogeography of North America (pp. 273–306). Geological Association of Canada, St. Johns, Newfoundland, Canada.

Kauffman, E. G., & Caldwell, W. G. E. (1993). The Western Interior Basin in space and time. Evolution of the Western Interior Basin. Geological Association of Canada, Special Paper, 39, 1–30.

Kirkland, J. I. (1989). Fossil elasmobranchs from the mid-Cretaceous (Middle Cenomanian - Middle Turanian) Greenhorn Cyclothem of eastern Nebraska. Nebraska Academy of Science, Proceedings, 99, 1–52.

L-Recinos, M., Cantalice, K. M., Caballero-Viñas, C., & Alvarado-Ortega, J. (2023). A new Mesozoic teleost of the subfamily Albulinae (Albuliformes: Albulidae) highlights the proto-Gulf of Mexico in the early diversification of extant bonefishes. Journal of Systematic Palaeontology, 21(1), 2223797. https://doi.org/10.1080/14772019.2023.2223797

Leidy, J. (1870). Remarks on ichthyodorulites and certain fossil Mammalia. Proccedings of the Academy of Natural Sciences of Phyladelphia, 22, 12–13.

Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomo 1. Edition Decima, Reformata. Laurentii Salvii: Holmiae, 824p. https://doi.org/10.5962/bhl.title.542

Logan, W. N. 1898. The invertebrates of the Benton, Niobrara and Fort Pierre Groups. University of Kansas, Geological Survey, 4, 431–518.

López-Conde, O. A., Sterli, J., Alvarado-Ortega, J., Chavarría-Arellano, M. L., & Porras-Múzquiz, H. (2019). The first record of Desmatochelys cf. D. lowii from the Late Cretaceous (Campanian) of Coahuila, Mexico. Journal of South American Earth Sciences, 94, 102204. https://doi.org/10.1016/j.jsames.2019.05.020

Mayrinck, D., Brito, P. M., & Otero, O. (2010). A new albuliform (Teleostei: Elopomorpha) from the Lower Cretaceous Santana Formation, Araripe Basin, northeastern Brazil. Cretaceous Research, 31(2), 227–236. https://doi.org/10.1016/j.cretres.2009.11.002

Miall, A. D. (2009). Initiation of the Western Interior foreland basin. Geology, 37(4), 383–384. https://doi.org/10.1130/focus042009.1

Müller, J. (1845). Untersuchungen über die Eingeweide der Fische, Schluss der vergleichenden Anatomie der Myxinoiden. Abhandlungen der Koniglichen Akademie der Wissenschaften zu Berlin, 1843, 109–170. https://www.biodiversitylibrary.org/page/29197776

Murray, A. M., & Cook, T. D. (2016). Overview of the Late Cretaceous fishes of the northern western interior seaway. Cretaceous Period: Biotic Diversity and Biogeography, New Mexico Museum of Natural History and Science, 71, 255–261.

Nelson, J. S., Grande, T. C., & Wilson, M. V. (2016). Fishes of the World. 5th Edition. John Wiley & Sons.

Piedad-Sánchez, N., Porras-Múzquiz, H., de la Rosa-Rodríguez, G., Carrillo-Pedroza, F. R., Flores-Castro, K., Esquivel-Macias, C., Sánchez-Hernández, O. A., Blancas-Zamora, J. A., Salas-Gutiérrez, D. N., Saucedo-González, D., Diaz-Garza, J. F., Quiroz-Hinojosa, G., Zamudio-Guzmán, I., & González-Carrillo, F. (2011). Litoestratigrafía preliminar de un depósito marino en la región de San Carlos, Municipio de Jiménez, Coahuila de Zaragoza, Norte de México. En IX Congreso cubano de Geología (Geología 2011), Estratigrafía y Paleontología. 4 al 8 de abril de 2011. ISBN 978-959-7117-30-8. p.1.

Polcyn, M. J., Bell, G. L., Jr., Shimada, K., & Everhart, M. J. (2008). The oldest North American mosasaurs (Reptilia: Squamata) from the Turanian (Upper Cretaceous) of Kansas and Texas with comments on the radiations of major mosasaur clades. In Everhart, M.J. (ed.), Proceedings of the Second Mosasaur Meeting (pp. 137–155). Fort Hays State University.

Ridewood, W. G. (1904). 4. On the Cranial Osteology of the Fishes of the Families Elopidœ and Albulidœ, with Remarks on the Morphology of the Skull in the Lower Teleostean Fishes generally. Proceedings of the Zoological Society of London, 74(3), 35–81. https://doi.org/10.1111/j.1469-7998.1904.tb08312.x

Riquelme, F., Alvarado-Ortega, J., Ruvalcaba-Sil, J. L., Aguilar-Franco, M., & Porras-Múzquiz, H. (2013). Chemical fingerprints and microbial biomineralization of fish muscle tissues from the Late Cretaceous Múzquiz Lagerstätte, Mexico. Revista mexicana de ciencias geológicas, 30(2), 417–435. http://www.rmcg.unam.mx/index.php/rmcg/article/view/125

Roemer, C. F. (1852). Die Kreidebildungen von Texas und ihre organischen Einschlüsse. 100 p. Adolph Marcus; Bonn. https://doi.org/10.5962/bhl.title.15015

Russell, D. A. (1988). A check list of North American marine Cretaceous vertebrates including freshwater fishes. Occasional Papers of Tyrrell Museum of Palaeontology, 4, 1–57.

Schwimmer, D. R., Stewart, J. D., & Williams, G. D. (1994). Giant fossil coelacanths of the Late Cretaceous in the eastern United States. Geology, 22(6), 503–506. https://doi.org/10.1130/0091-7613(1994)022<0503:GFCOTL>2.3.CO;2

Scotese, C. R. (2014). Atlas of Early Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 23–31, Mollweide Projection, PALEOMAP Project, Evanston, IL. https://doi.org/10.13140/2.1.4099.4560.

Shimada, K. (1997). Gigantic lamnoid shark vertebra from the Lower Cretaceous Kiowa Shale of Kansas. Journal of Paleontology, 71(3), 522–524. https://doi.org/10.1017/S0022336000039536

Shimada, K. (2015). Body form and paleoecology of the large Late Cretaceous bony fish, Pachyrhizodus caninus. Cretaceous Research, 52, 286–291. https://doi.org/10.1016/j.cretres.2014.10.006

Silva-Martínez, L. E., Blanco-Piñón, A., & de León-González, J. A. (2014). Equinoideos del Cretácico Tardío del Norte de Coahuila, México. Boletín de la Sociedad Geológica Mexicana, 66(2), 377–395. http://dx.doi.org/10.18268/BSGM2014v66n2a12

Stinnesbeck, W., Ifrim, C., Schmidt, H., Rindfleisch, A., Buchy, M. C., Frey, E., Gonzalez-Gonzalez, A. H., Vega, F. V., Cavin, L., Keller, G., & Smith, K. T. (2005). A new lithographic limestone deposit in the Upper Cretaceous Austin Group at El Rosario, county of Múzquiz, Coahuila, northeastern Mexico. Revista mexicana de ciencias geológicas, 22(3), 401–418. http://www.rmcg.unam.mx/index.php/rmcg/article/view/847

Stinnesbeck, E. S., Herder, F., Rust, J., & Stinnesbeck, W. (2023). Taphonomy of the teleost Tselfatia formosa Arambourg, 1943 from Vallecillo, NE Mexico. PLoS ONE, 18(2), e0280797. https://doi.org/10.1371/journal.pone.0280797

Stoliczka, F. (1871). Cretaceous fauna of southern India. 3, The Pelecypoda, with a review of all known genera of this class, fossil and Recent. Geological Survey of India, Palaeontologia Indica, 537.

Taverne, L., & Capasso, L. (2018). Osteology and relationships of Italoalbula pietrarojae gen. and sp. nov. (Teleostei, Albuliformes) from the Marine Cretaceous of Pietraroja (Campania, Southern Italy). Thalassia Salentina, 40, 95–118. https://api.semanticscholar.org/CorpusID:191167151

Underwood, C. J., & Cumbaa, S. L. (2010). Chondrichthyans from a Cenomanian (Late Cretaceous) bonebed, Saskatchewan, Canada. Palaeontology, 54, 903–944. https://doi.org/10.1111/j.1475-4983.2010.00969.x

Williston, S. M. (1894). A New Turtle from the Benton Cretaceous (p. 5-18). Kansas University Quarterly, 5–18.

Woodward, A. S. (1893). Palaeichthyological notes. Journal of Natural History, 12(70), 281 –287.

Woodward, A. S. (1907). The fossil fishes of the English Chalk, pt. 3. Monograph of the Palaeontographical Society, London, 97–128. https://doi.org/10.1080/02693445.1907.12035529

Paleozoología

Figure 1. Photography (A, B) and line drawing (C, D) of MUZ-3915, in part (A, C) and counterpart (B, D). The scale indicates 50 mm.

Figure 2. Schematic drawing of the metapterygoid (A, C) and hyomandibular (B, C) of MUZ-3915. The scales indicate 50 mm. Abbreviations: an.c., anterior crest; ad.p., antero-dorsal process; an.p., anterior portion; d.r., dorsal region; hy-mpt.f., hyomandibular-metapterygoid fenestra; mpt.cup: metapterygoid cup; mpt.fc., metapterygoid facet; op.p., opercular process; pd.p., postero-dorsal process; pop.g., preopercular groove; v.p. ventral portion; v.r. ventral region.

Figure 3. Line drawing of the type of articulation of the metapterygoid and the hyomandibular in different albuliform species. A and G are in internal view. References: A and G) Forey (1973); B) CRM-1246; C) Gallo and Figueiredo (2002); D) Fielitz and Bardack (1992); E) Hernández-Guerrero et al. (2021); F) Filleul (2001); H) MUZ-3915.

Figure 4. The Geological Age and the maximum length of Albuliformes fishes reported to date. References: Nelson et al. (2016) for Albula vulpes; Gallo and Figueredo (2002) for †Farinichthys gigas. Abbreviations: C, Cenozoic; K, Cretaceous, L, late; Ng, Neogene; Pg, Paleogene; Q, Quaternary.

Table 1. Some Giant teleostomorph fishes from the Western Interior Seaway and their respective trophic niches.

Taxon

Trophic niche

References

Pachyrhizodus caninus

Top predator (piscivore)

Shimada (2015)

Xiphactinus audax

Top predator (piscivore)

Walker (2006)

Ichthyodectes ctenodont

Top predator (piscivore)

Everhart et al. (2010)

Gillicus arcuatus

Top predator (piscivore)

Walker (2006)

Prorosphyraena perniciosa

Top predator (piscivore)

Liston et al. (2019)

Saurodon leanus

Top predator (piscivore)

Everhart et al. (2010)

Stratodus apicalis

Top predator (piscivore)

Cope (1871)

San Carlos albuliform

Secondary consumer (invertebrate-feeder)

Present study

Bonnerichthys gladius

Primary consumer (planktonic)

Friedman et al. (2010)

Enlaces refback

  • No hay ningún enlace refback.


Paleontología Mexicana, Vol. 13, núm. 1, 15 de enero de 2024, es una publicación semestral  (enero y julio) editada por la Unidad Editorial del Instituto de Geología de la Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México, CDMX. El editor en jefe es el Dr. Josep Anton Moreno Bedmar, CE josepamb@geologia.unam.mx y la editora técnica es la Mtra. Sandra Ramos, sandraram@geologia.unam.mx. Reserva de derechos al uso exclusivo No. 04-2022-072810185500-102, ISSN (revista impresa): 0185-478X, e-ISSN (versión electrónica): 2007-5189, ISSN-L: 0543-7652. http://www.ojs-igl.unam.mx/index.php/Paleontologia/index. https://twitter.com/paleontologiam Fecha de la última modificación, 15 de junio de 2023.

 

Las ideas aquí expresadas por los autores no necesariamente reflejan la postura del editor de la publicación Paleontología Mexicana. Se autoriza la reproducción total o parcial de los textos aquí publicados siempre y cuando se cite la fuente completa o la dirección electrónica de la publicación.