Paleontología Mexicana

Volumen 10, núm. 1, 2021, p. 37 – 51

Corals from the Early Cretaceous (?Late Valanginian – Aptian) of Puebla (Mexico): Family Solenocoeniidae

Corales del Cretáceo Temprano (?Valanginian tardío – Aptiano) de Puebla (México): Familia Solenocoeniidae

Löser, Hannesa,*

a Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Blvd. Luis Donaldo Col. Los Arcos, Colosio S/N y Madrid, 83250 Hermosillo, Sonora, Mexico.

* loeser@paleotax.de


The present contribution is the second instalment of a systematic revision of the Early Cretaceous corals of the area of San Juan Raya and San Antonio Texcala, Puebla, Mexico. The corals of the family Solenocoeniidae (superfamily Eugyroidea) are revised. The family is represented by the genera Adelocoenia (two species), Cryptocoenia (seven species), and Pentacoenia (eight species). The coral species show the most relationships to species from the Hauterivian of the Paris Basin.

Keywords: Corals, Cretaceous, Mexico, Puebla, Taxonomy.


Este trabajo es el segundo en una serie de revisiones sistemáticas de los corales del Cretácico Inferior de las áreas de San Juan Raya y San Antonio Texcala, Puebla, México. Se revisaron los corales de la familia Solenocoeniidae (superfamilia Eugyroidea). La familia se encuentra representada por los géneros Adelocoenia (dos especies), Cryptocoenia (siete especies) y Pentacoenia (ocho especies). Las especies de corales encontradas en el área de estudio muestran una fuerte relación con las encontradas en el Hauteriviano de la Cuenca de París.

Palabras clave: corales, Cretácico, México, Puebla, taxonomía.

1. Introduction

The outcrop area in the south-eastern part of the Mexican state Puebla (southwest of the Tehuacán Valley) has been known for a long time as an extremely fossiliferous area, containing abundant shallow marine invertebrate fossil remains. Corals represent some of the most abundant body fossils, second only to molluscs (bivalves, gastropods). A first instalment of a systematic revision of the corals applying modern methods was published by Löser et al. (2013). Here, this revision is continued with a second contribution.

2. Study area

The study area is located in the Zapotitlán Basin (Martínez-Amador et al., 2001). The area is limited on the east by Cenozoic deposits of the Tehuacán Valley, by the Pozo Hondo fault on the west (Mendoza-Rosales et al., 2010), by the basement high consisting of the Cozahuico granite and Acatlán and Oaxaca metamorphic complexes on the South (Elías-Herrera and Ortega-Gutiérrez, 2002), and by the Albian and Cenomanian platform deposits on the north (Calderón-García, 1956). The depositional environment of the Zapotitlán Basin consists of a mixed marine sedimentary system with synsedimentary faults in an extensive regime (Mendoza-Rosales, 2010).

3. Stratigraphy

The stratigraphy was already discussed in Löser et al. (2013). Generally, a Barremian age for the Zapotitlan Formation and an Aptian age for the San Juan Raya Formation was accepted, but never supported by proper biostratigraphic data. More recent studies (González León et al., 2015) have revealed that at least some parts of the San Juan Raya Formation are older and may have an Upper Valanginian to Lower Hauterivian age. The most examined coral material from this formation – the Aguilar collection – does not derive from a specific point, but rather from the area of San Juan Raya. Newly collected material could be partially better constrained in age. Nevertheless, the Aguilar collection comprises a large amount of the available coral material, therefore should not be neglected just because its uncertain provenance.

Nearly fifty coral genera could be found amongst the coral material of the San Juan Raya Formation, for which a critical stratigraphic range is available in Löser (2016). When the ranges of these genera are summarised and compared to the summarised ranges of all Cretaceous coral genera, it seems that the corals of the San Juan Raya Formation represent an Aptian age (Figure 1) but the Aptian is – compared to other stages – very rich in genera. When the proportion of the genera found in the San Juan Raya Formation is compared to the total number of genera, a peak can be found in the Hauterivian (Figure 1, blue percentage line). Therefore, the coral fauna supports the new age assignment. A Valanginian age cannot be excluded, but coral faunas of this period are hardly available for comparison. Thus, the real first occurrence of coral genera found in Hauterivian coral localities may be earlier. A Barremian age and even Aptian also cannot be excluded based on coral data. The coral faunas of the Hauterivian to Albian are taxonomically very similar and represent a comparable faunal inventory.

4. Outcrop areas and localities

The coral samples come from four outcrop areas close to the road from Tehuacán to Santiago Chazumba (Figure 2).

(1) San Antonio Texcala.

The riverbed north of San Antonio Texcala sediments of the Zapotitlán Fm (Barremian) is exposed. The material described by Felix (1891) is supposedly from here, see Löser (2006) for more explanations.

(2) San Lucas Teteletitlán.

Outcrop area located to the north of San Lucas Teteletitlán, containing sediments of the upper San Juan Raya Fm and probably having an Aptian age.

(3) San Juan Raya.

A large area with several riverbeds with well exposed sections and rich fossil material. All belong to the San Juan Raya Fm (Late Valanginian to Early Hauterivian for the moment). The sample material comes mainly from the historic Aguilera collection without an exact sample location, but there are also more recent collections.

(4) Atecoxco.

East of Atecoxco the La Compañía section (Mendoza-Rosales, 2010) yielded rich coral material in several beds. The section is preliminarily assigned to the Zapotitlán Fm and ranges from the Late Barremian (sample point CIA 26) to the Early Aptian (sample points AC 89, CIA 45, CIA 48, CIA 56, CIA 58).

Coral colonies are always small. Most colonies have a diameter of 5 cm, colonies larger than 10 cm are rare. The corals do not form bioconstructions, there are only found in limestone banks that are intercalated in the generally marly-silty sediments of the San Juan Raya Formation, see Löser et al. (2013). Locally, corals are concentrated on small mounds that were probably slightly elevated above the sea floor.

5. Methods

Coral specimens were cut and polished. Thin sections in both transversal and longitudinal orientation were prepared where possible. Thin sections were scanned by passing light through them using a flatbed scanner with an optical resolution of 6400 dpi. Scanned images were then transferred to grey scale bit maps. Their quality was amended by histogram contrast manipulation (contrast stretching) where possible.

In order to gain more insight into the intraspecific variation of fossil corals and to obtain a better strategy for comparing species, calicular dimensions of one or two thin sections of each species were systematically measured. To achieve statistical significance, the largest number of possible measurements was taken. This number was mainly determined by the size and quality of the thin section and the size of the single corallites in relation to the size of the thin sections.

For each type of measurement (here mainly the calicular diameter) in one thin section, the following values were obtained:

n number of measurements.

min–max lowest and highest measured values.

µ arithmetic mean (average).

s standard deviation.

v coefficient of variation according to K. Pearson.

µ±s first interval.

Thin sections were measured and values were calculated using the Palaeontological Database System PaleoTax, module PaleoTax/Measure (www.paleotax.de/measure); for details on the mathematical background, see Löser (2012). Characters visible on the fossils were compared against those on specimens in worldwide fossil coral collections and an associated image database (27250 specimens, approximately 15500 illustrated, located in the Estación Regional de Noroeste (ERNO), Sonora, Mexico). Data storage and processing were carried out using the PaleoTax database program (Löser, 2004).

To compare the studied fauna with other coral faunas outside the study area, a computer database of about 2700 worldwide coral localities with coral indications was used (Löser et al., 2002, 2005). To simplify the analysis, localities of the same age located in the same basin, on the same continental margin or the same interoceanic platform were grouped together into one palaeo-province, a type of large faunule, sensu Johnson (2007). Altogether, this produced 310 provinces of Cretaceous age. Only firmly dated localities were assigned to a province to ensure that the following analysis is valid, and the studied localities were not included in any existing province. For the study area, independent provinces were created to allow a clear comparison between the existing provinces and the new material. Interregional comparisons were carried out between the new provinces and existing provinces having at least three species in common with the fauna of the studied area. For details, see also Löser (2008) and Löser and Minor (2007).

The following abbreviations are used to describe the dimensions of the corals:

ccd, distance between calicular centres (mm).

clmin, smaller calicular diameter (calicular pit; mm).

clmax, smaller calicular diameter (calicular pit; mm).

The abbreviations used in the synonymy lists follow Matthews (1973):

*, earliest valid publication of the species name.

p, the reference applies only in part to the species under discussion.

v, the specimen was observed by the author.

Collection abbreviations as follows: ERNO, Estación Regional de Noroeste, UNAM (Hermosillo, Mexico); GPSL, Geologische und Paläontologische Sammlung der Universität Leipzig (Germany); IGM, Instituto de Geología, UNAM (Mexico City, Mexico).

6. Systematic palaeontology

Order Scleractinia Bourne, 1900

As explained in many previous publications (Löser et al., 2018; Löser and Heinrich, 2018) the classification of the order Scleractinia into suborders is neither practical nor possible. It was therefore proposed to apply superfamilies in place of suborders (Löser, 2016). Twenty-seven superfamilies with 56 families (or informal groups) are distinguished that have a range in the Cretaceous. In contrast to former classification systems based on suborders, the superfamilies may constitute monophyletic groups.

Superfamily Eugyroidea Achiardi, 1875

The superfamily encompasses only colonial (cerioid, flabelloid, hydnophoroid, meandroid, phaceloid, plocoid) corals. The septa are compact. The septal symmetry is generally regular in various systems or in size order. The septal microstructure is poorly known and probably consists of small trabeculae. Synapticulae and pali are absent. A columella is rare. The tabular endotheca is always well developed. The wall is compact, parathecal, septothecal, or paraseptothecal. The families are separated by their corallite arrangement: flabelloid, hydnophoroid and meandroid in the Eugyridae and felixigyrids; phaceloid in the Cladophylliidae; plocoid and cerioid in the Solenocoeniidae. The superfamily ranges from the Middle Jurassic to the Cretaceous. Its occurrence from the Turonian on is questionable.

Family Solenocoeniidae Roniewicz, 2008

The Late Jurassic to Early Cretaceous coral family encompasses nine genera. The first member of the family appeared in the Middle Jurassic, another four in the Late Jurassic and the remaining four genera in the Early Cretaceous (Figure 3). The genera of the family belong to the most common genera in the fossil record of the Late Jurassic and Cretaceous, up to the Cenomanian, when the family became extinct. According to the literature, the family encompasses approximately 200 species, most of them in the genus Cryptocoenia Orbigny, 1849 (130 species). However, a critical revision of type material yielded about 35 species for this genus.

The family gathers exclusively cerioid and plocoid genera that are all characterised by relatively short septa and the general absence of a columella (except in Pseudocoeniopsis Roniewicz, 1976). The skeletal morphology varies little within the family: the corallites are small (less than 10 mm in diameter) with short septa in a regular symmetry. The septa are not connected to each other. The coenosteum is mostly narrow. The endotheca is well developed. The genera are distinguished by their septal symmetry, and the formation of the coenosteum.

For this material, the literature applies the family name Cyathophoridae. The systematic position of the genus Cyathophora Michelin, 1843 is unknown. The type of the type species C. richardi Michelin, 1843 is poorly preserved. It differs in one characteristic clearly from the Solenocoeniidae: it has long septa that are connected to each other. The studies published by Zaman and Lathuilière (2014) and Morycowa and Roniewicz (2016) are based on a conceptual idea, rather than on the type material.

Genus Adelocoenia Orbigny, 1849

Type species. Astrea castellum Michelin, 1844.

Remarks. The genus shows an octameral septal symmetry. It is more common in the Late Jurassic. In previous literature, the name Pseudocoenia is applied to comparable material. This genus cannot be used anymore for plocoid corals of the Solenoeniidae with an octameral septal symmetry because the type species of Pseudocoenia belongs to the genus Alloiteaucoenia or vice versa, see the discussion in Löser et al. (2021).

Adelocoenia micrommatos (Felix, 1891)

*v 1891 Cryptocoenia micrommatos Felix, p. 154,

pl. 24, fig. 5, 5 a–b.

v 2006 Pseudocoenia micrommatos (Felix,

1891). Löser, p. 20, fig. 2B, C.

Material examined. GPSL FLX 2102.


(GPSL FLX 2102)

Remarks. The species was presented in larger detail in Löser (2006).

Other occurrences. Late Jurassic of the western (France) and central Tethys (Germany).

Adelocoenia poblana (Reyeros Navarro, 1963)

*v 1963 Procyathophora poblana Reyeros

Navarro, p. 9, pl. 3, fig. 4.

Material examined. IGM 1204.


(IGM 1204)

Remarks. The type is poorly preserved and not sectioned. Systematic measurements could not be carried out.

Other occurrences. Late Jurassic of the central (Germany) and western Tethys (Spain).

Genus Cryptocoenia Orbigny, 1849

Type species. Astrea alveolata Goldfuss, 1826

Remarks. The genus shows a hexameral or decameral septal symmetry. The genus is very common from the Late Jurassic to early Late Cretaceous and counts, as mentioned above, with a high number of species. The species of the study area are summarised in Figure 4.

Figure 4. Distinction of the species of the genus Cryptocoenia within the study area.

Cryptocoenia aguilerai (Reyeros Navarro, 1963)

*v 1963 Procyathophora aguilerai Reyeros

Navarro, p. 8, pl. 3, fig. 3, 5.

v 2016 Cryptocoenia aguilerai (Reyeros

Navarro, 1963). Löser and Zell, p. 14, fig. 5.1–3.

[= here detailed synonymy].

Material examined. IGM 1199, IGM 6833, IGM 6834.


(IGM 1199)

Remarks. IGM 1199 and 6833 are the holotype and paratype of Procyathphora aguilerai Reyeros Navarro, 1963. The material is not sectioned, making difficult a comparison to other material. Systematic measurements could not be carried out.

Other occurrences. Tithonian to Middle Cenomanian of the western (France, Spain) and central Tethys (Czech Republic, Germany, Greece), and the European Boreal (England).

Cryptocoenia annae (Volz, 1903)

Figure 5, A–B

* 1903 Cyathophora annae Volz, p. 26, pl. 4, fig.


v 2016 Cryptocoenia annae (Volz, 1903). Löser

and Zell, p. 14, fig. 5.4–6 [= here detailed


Material examined. ERNO L-4412, L-7481, L-7480, L-7481, L-7482, IGM 1201, 9241, 9267; 7 thin sections.


(IGM 9241)

Other occurrences. Hauterivian to Early Cenomanian of the European Boreal (France), western (Spain), central (Romania, Serbia) and eastern Tethys (Iran).

Cryptocoenia antiqua Orbigny, 1850

Figure 5, C–E

* 1850 Cryptocoenia antiqua Orbigny, (2), p. 92.

v 1964 Cyathophora steinmanni Fritzsche 1924.

Morycowa, p. 24, pl. 3, fig. 2, pl. 5, fig. 2, 3.

vp 1996 Pentacoenia elegantula d'Orbigny, 1850.

Baron-Szabo and Steuber, p. 8, pl. 3, fig. 3.

v 1996 Pseudocoenia annae (Volz, 1903). Baron-

Szabo and Steuber, p. 8, pl. 2, fig. 1.

v 2010 Cryptocoenia atempa (Felix, 1891).

Löser, p. 591, fig. 3.4.

v 2013 Cryptocoenia bulgarica (Toula, 1884).

Löser, Werner and Darga, p. 64, pl. 9, fig. 2–3.

v 2016 Cryptocoenia atempa (Felix, 1891). Löser

and Zell, p. 15, fig. 5.7–9.

Material examined. ERNO L-7118, L-7486; 3 thin sections.


(ERNO L-7118)

Other occurrences. Hauterivian to Cenomanian of the European Boreal (France), central (Germany, Greece, Poland) and western Tethys (France, Spain).

Cryptocoenia desori (Koby, 1897)

Figure 5, F–H

*v 1897 Convexastraea desori Koby, p. 30, pl. 2,

fig. 9, 10.

v 2010 Cryptocoenia desori (Koby, 1897).

Löser, Castro and Nieto, p. 323, fig. 3.12 [= here

detailed synonymy].

Material examined. ERNO L-7490, IGM 9256; 2 thin sections.


(IGM 9256)

Other occurrences. Barremian to Cenomanian, worldwide.

Cryptocoenia incerta Achiardi, 1880

Figure 6, A–C

*v 1880 Cryptocoenia ?incerta Achiardi, p. 298,

pl. 20, fig. 4 + p. 275.

v 2010 Cryptocoenia bulgarica (Toula, 1884).

Löser, p. 592, fig. 3.5 [= here detailed synonymy

(as C. bulgarica)].

Material examined. ERNO L-7244, IGM 9221; 3 thin sections.


(IGM 9221)

Remarks. After examination of the type material of Cryptocoenia incerta it was found that material formerly assigned to C. bulgarica (Toula, 1884) at least partly belongs to C. incerta.

Other occurrences. Late Jurassic to Cenomanian, worldwide.

Cryptocoenia jacobi (Alloiteau, 1948)

Figure 6, D–E

*v 1948 Cyathophora jacobi Alloiteau, p. 722, pl.

27, fig. 1, 7, 8.

v 2018 Cryptocoenia jacobi (Alloiteau, 1948).

Löser, Steuber and Löser, p. 49, pl. 7, fig. 4–6 [=

here detailed synonymy].

Material examined. ERNO L-7239, IGM 1197, IGM 9270; 1 thin section.


(ERNO L-7239)

Other occurrences. Tithonian to Cenomanian of the western (France, Spain), central (Czech Republic) and eastern Tethys (India, Iran), and the European Boreal (England, France).

Cryptocoenia regularis (Fromentel, 1884)

Figure 6, F–G

vp 1881 Convexastrea bachmanni Koby. Koby, p.

103, pl. 23, fig. 5.

vp 1881 Convexastrea meriani Koby. Koby, p.

102, pl. 23, fig. 1–-4.

*v 1884 Cyathophora (Cyathocoenia) regularis

Fromentel, p. 540, pl. 149, fig. 2.

v 1897 Cryptocoenia picteti Koby, p. 32, pl. 2,

fig. 11, 11a.

v 1966 Adelocoenia bachmanni Koby. Beauvais,

p. 992, pl. 2, fig. 1.

Material examined. ERNO L-7243, GPSL FLX 2090; 1 thin section.


(ERNO L-7243)

Other occurrences. Late Jurassic to Middle Albian of the European Boreal (France), the western Tethys (France, Spain), and the western Atlantic (Mexico).

Genus Pentacoenia Orbigny, 1850

Type species. Pentacoenia elegantula Orbigny, 1850

Remarks. The genus shows a pentameral septal symmetry. The genus occurs rarely in the Early Cretaceous and Early Cenomanian, but is more common from the Hauterivian to Early Aptian. Currently, only five species are assigned to the genus. For three of them, type material is available. About 15 species reaching from the Late Valanginian to Early Cenomanian can be distinguished based on sample material. For this reason, a number of species in open nomenclature are reported from the study area. The creation of new species might be necessary in the future. The species of the study area are summarised in Figure 7.

Figure 7. Distinction of the species of the genus Pentacoenia within the study area.

Pentacoenia atempa (Felix, 1891)

Figure 6, H

v 1889 Cryptocoenia (?) spec. - Toula, p. 83.

*v 1891 Cyathophora atempa Felix, p. 155, pl.

25, fig. 7, 8.

v 1998 Pentacoenia pulchella d'Orbigny, 1850.

Morycowa and Masse, p. 744, fig. 13.1.

Material examined. GPSL FLX 1994.


(GPSL FLX 1994)

Other occurrences. Hauterivian to Early Albian of the European Boreal (France), the western (France, Spain) and central Tethys (Bulgaria, Greece).

Pentacoenia elegantula Orbigny, 1850

Figure 8, A–C

* 1850 Pentacoenia elegantula Orbigny, (2), p.


1857 Pentacoenia elegantula .- Fromentel, p.

51, pl. 7, fig. 6, 7.

v 1964 Pentacoenia pulchella d'Orbigny, 1850.

Morycowa, p. 33, text-fig. 3 b, pl. 6, fig. 5,

pl. 7, fig. 2, 3.

v 1971 Pentacoenia pulchella d'Orbigny, 1850.

Morycowa, p. 43, text-fig. 6e, pl. 6, fig. 2, 3.

vp 1996 Pentacoenia elegantula d'Orbigny, 1850.

Baron-Szabo and Steuber, p. 8, pl. 3, fig. 3.

v 1996 Pentacoenia tombecki Fromentel, 1857.

Baron-Szabo and Steuber, p. 9, pl. 2, fig. 5.

Material examined. SLD 120601; 2 thin sections.


(ERNO L-120601)

Other occurrences. Hauterivian to Early Aptian of the European Boreal (France), the central Tethys (Greece, Romania), and the western Atlantic (Mexico).

Pentacoenia pulchella Orbigny, 1850

Figure 8, D–F

* 1850 Pentacoenia pulchella Orbigny, (2),

p. 92.

vp 1996 Pentacoenia elegantula d'Orbigny, 1850.

Baron-Szabo and Steuber, p. 8, pl. 3, fig.3.

v 2010 Pentacoenia aff. elegantula d'Orbigny,

1850. Löser, p. 598, fig. 3.12.

Material examined. IGM 9239; 2 thin sections.


(IGM 9239)

Other occurrences. Hauterivian to Early Albian of the European Boreal (France), central (Greece) and the western Tethys (France), and western Atlantic (Mexico).

Pentacoenia tombecki Fromentel, 1857

Figure 9, A–B

* 1857 Pentacoenia tombecki Fromentel, p. 51.

v 1983 Cyathophora haysensis Wells, 1932.

Reyeros de Castillo, p. 15, pl. 2, fig. 3, pl. 3,

fig. 1.

Material examined. IGM 9272; 1 thin section.


(IGM 9272)

Other occurrences. Early Hauterivian of the European Boreal (France).

Pentacoenia sp. 1

Figure 9, C–D

Material examined. IGM 9273; 1 thin section.


(IGM 9273)

Other occurrences. Early Hauterivian of the European Boreal (France).

Pentacoenia sp. 2

Figure 8, G–I

v 2001 Pentacoenia pulchella d'Orbigny 1850.

Löser, p. 43, pl. 2, fig. 1.

v 2001 Pentacoenia sp. - Löser, p. 43, pl. 2,

fig. 3.

v 2001 Pentacoenia tombecki de Fromentel 1857.

Löser, p. 43, pl. 2, fig. 2.

v 2016 Pentacoenia sp. - Löser, fig. P41abc.

Material examined. IGM 9229, 9268; 3 thin sections.


(IGM 9229)

Other occurrences. Hauterivian to Early Aptian of the European Boreal (France) and the central Tethys (Greece).

Pentacoenia sp. 3

Figure 10, A

Material examined. IGM 1195.


(IGM 1195)

Remarks. According to Reyeros Navarro (1963), IGM 1195 is the type specimen of Stylina vaughani. The present specimen with number 1195 is not identical to the illustration in Reyeros Navarro (1963) and belongs to the genus Pentacoenia. The specimen IGM 1194, illustrated by Reyeros Navarro (1963, pl. 2, fig. 2) as Stylina vaughani, is not a coral. According to a personal communication with Carmen Perrilliat, the former curator of the IGM collection, the holotype Stylina vaughani has to be considered lost. Specimen IGM 1194 cannot considered the type even if it was present when the new species was established.

Other occurrences. Early Hauterivian of the European Boreal (France).

Pentacoenia sp. 4

Figure 10, B–C

vp 1889 Cryptocoenia ramosa Toula, p. 83, pl. 5,

fig. 10, 11.

v 1964 Pentacoenia microtrema d'Orbigny, 1850.

Morycowa, p. 33, text-fig. 3 c, pl. 6, fig. 6.

Material examined. IGM 9269; 1 thin section.


(IGM 9269)

Remarks. The type material of Cryptocenia ramosa Toula, 1889 consists of various syntypes that belong to at least three different genera. A lectotype must be designated but the material was not found at the Vienna Natural History Museum in August 2016.

Other occurrences. Hauterivian to Aptian of the European Boreal (France) and the central Tethys (Bulgaria, Poland).

7. Discussion

The distribution of the species described in other areas (Figure 11) ranges from the Late Jurassic to the early Late Cretaceous, when the family became extinct. Seven species are already known from the Late Jurassic and five reach into the Cenomanian. Most (13) species occur in Hauterivian localities, with another 12 in the Aptian. Both times are marked by species-rich faunas: on the one hand, the faunas of the Paris Basin (basal Hauterivian), and on the other, the faunas of the Early Aptian age distributed worldwide. Towards the Cenomanian, less and less species of the studied fauna are found. When compared to other areas (Figure 12), the Valanginian/Hauterivian species of the present fauna shows most relationships to the above-mentioned faunas of the Paris Basin, but also to the extreme species-rich faunas of the southern margin of the Pelagonium (now Greece).


Sample preparation was financed by CONACyT project 52442-Q and UNAM DGAPA PAPIIT project IN101111. Much of the measuring of the corallite dimensions was done by L. Puebla Clark (Hermosillo). Thin sections were mainly prepared by Aimée Orcí (Hermosillo). English text correction by Proof-Reading-Services.com (Letchworth Garden City). Two anonymous reviews helped to improve the manuscript and are kindly acknowledged. Sandra Ramos from the Publication Department was a great help in compiling the final version of the text.


Achiardi, A. de, 1875, Coralli eocenici del Friuli. Parte 3: Atti della Società Toscana di Scienze naturali, 1(3), 147–222.

Achiardi, A. de, 1880, Coralli giurassici dell' Italia settentrionale: Atti della Società Toscana di Scienze naturali, 4(2), 233–310.

Alloiteau, J., 1948, Polypiers des couches albiennes à grandes trigonies de Padern (Aude): Bulletin de la Société géologique de France (5), 18, 699–738.

Baron-Szabo, R.C., Steuber, T., 1996, Korallen und Rudisten aus dem Apt im tertiären Flysch des Parnass-Gebirges bei Delphi-Arachowa: Berliner geowissenschaftliche Abhandlungen (E), 18, 3–75.

Beauvais, L., 1966, Révision des madréporaires du Dogger de la collection Koby: Eclogae Geologicae Helvetiae, 59(2), 989–1024.

Bourne, G.C., 1900, The Anthozoa, ]in Lankester, R. (ed.), Treatise on Zoology, Part 2, Porifera and Coelenterata: London, A. & C. Black, 59–79.

Calderón-García, A., 1956, Bosquejo geológico de la región de San Juan Raya, Puebla. Guía de campo, in XX Congreso Geológico International: Mexico, Maldonado-Koerdell, M. et al. (eds.), 7–91.

Elías-Herrera, M., Ortega-Gutiérrez, F., 2002, Caltepec fault zone: an Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico and regional tectonic implications: Tectonics, 21(3), 4–19.

Felix, J., 1891, Versteinerungen aus der mexicanischen Jura und Kreideformation: Palaeontographica, 37, 140–194.

Fromentel, E., 1857, Description des polypiers fossiles de l'étage Néocomien: Bulletin de la société des sciences historiques et naturelles de l'Yonne, 1–78.

Fromentel, E., 1884, Zoophytes, terrain crétacé (13): Paléontologie française, 8, 529–560.

Goldfuss, A., 1826, Petrefacta Germaniae (1, 1): Düsseldorf, Arnz, 1–76.

González León, O., Jeremiah, J., Schlagintweit, F., Bover Arnal, T., Moreno Bedmar, J.A., Mendoza Rosales, C.C., Vega, F.J., 2015, Novel contributions and errata to the work "Morphology and ontogeny of the fossil lobster Meyeria magna M'Coy, 1849 (Astacidae: Mecochiridae) from the Lower Cretaceous (Lower Aptian) of Mexico, United Kingdom and Spain": Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 276(3), 323–334.

Johnson, K.G., 2007, Reef-coral diversity in the Late Oligocene Antigua Formation and temporal variation of local diversity on Caribbean Cenozoic Reefs: Schriftenreihe der Erdwissenschaftlichen Kommissionen der Österreichischen Akademie der Wissenschaften, 17, 471–491.

Koby, F., 1881, Monographie des polypiers jurassiques de la Suisse (2): Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 8, 61–108.

Koby, F., 1897, Monographie des polypiers crétacés de la Suisse (2): Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 23, 29–62.

Löser, H., 2001, Le site de Vallières (département de l’Aube, France), résultats préliminaires sur des coraux de l’Hauterivien inférieur (Crétacé): Bulletin annuel de l'Association géologique de l'Aube, 22, 39–53.

Löser, H., 2004, PaleoTax - a database program for palaeontological data: Computer & Geosciences, 30(5), 513–521.

Löser, H., 2006, Barremian corals from San Antonio Texcala, Puebla, Mexico - A review of the type material of Felix 1891[CD-ROM]: Boletín del Instituto de Geología, 114, 1–68.

Löser, H., 2008, Early Cretaceous coral faunas from East Africa (Tanzania, Kenya; Late Valanginian–Aptian) and revision of the Dietrich collection (Berlin, Germany): Palaeontographica, 285(1–3), 23–75.

Löser, H., 2010, The Barremian coral fauna of the Serre de Bleyton mountain range (Drôme, France): Annalen des Naturhistorischen Museums in Wien (A),112, 575-612.

Löser, H., 2012, Intraspecific variation in the genus Stelidioseris (family Actinastraeidae, suborder Archeocaeniina, order Scleractinia; Jurassic–Cretaceous): Geologica Belgica, 15(4), 382–387.

Löser, H., 2016, Systematic part: Catalogue of Cretaceous Corals, 4, 1–710.

Löser, H., Castro, J.M., Nieto, L.M., 2010, A small Albian coral fauna from the Sierra de Seguilí (Alicante province, SE Spain): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 255(3), 315–326.

Löser, H., García-Barrera, P., Mendoza Rosales, C.C., Ortega-Hernández, J., 2013, Corals from the Early Cretaceous (Barremian–Early Albian) of Puebla (Mexico) - Introduction and family Stylinidae: Revista Mexicana de Ciencias Geológicas, 30(2), 385–403.

Löser, H., Heinrich, M., 2018, New coral genera and species from the Rußbach/Gosau area (Late Cretaceous; Austria): Palaeodiversity, 11(1), 127–149.

Löser, H., Minor, K., 2007, Palaeobiogeographic aspects of Late Barremian to Late Albian coral faunas from Northern Mexico (Sonora) and the southern USA (Arizona, Texas): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 245(2), 193–218.

Löser, H., Nieto, L.M., Castro, J.M., Reolid, M., 2021, A Lower Valanginian coral fauna from the South Iberian Palaeomargin (Internal Prebetic, South Spain): Palaeontologia Electronica, 24(1), 1–57.

Löser, H., Steuber, T., Löser, C., 2018, Early Cenomanian coral faunas from Nea Nikopoli (Kozani, Greece; Cretaceous): Carnets de Géologie / Notebooks on Geology, 18(3), 23–121.

Löser, H., Werner, W., Darga, R., 2013, A Middle Cenomanian coral fauna from the Northern Calcareous Alps (Bavaria, Southern Germany) – new insights into the evolution of Mid-Cretaceous corals: Zitteliana (A), 53, 37–76.

Löser, H., Zell, P., 2016, Late Aptian corals from the South Iberian Sub-Basin (Cretaceous; Eastern Spain): Revista de la Sociedad Geológica de España, 29(1), 3–20.

Löser, H. et al., 2002, List of Citations: Catalogue of Cretaceous Corals, 2, 1–784.

Löser, H. et al., 2005, List of Localities: Catalogue of Cretaceous Corals, 3, 1–366.

Martínez-Amador, H., Zárate-Barradas, R., Loaeza-García, J.P., Saenz-Pita, R., Cardoso-Vázquez, E.A., 2001, Carta geológica minera Orizaba E14–6, escala 1:250000: Mexico City , Servicio Geológico Mexicano.

Matthews, S.C., 1973, Notes on open nomenclature and on synonymy lists: Palaeontology, 16(4), 713–719.

Mendoza-Rosales, C.C., 2010, Estratigrafía y facies de las cuencas cretácicas del sur de Puebla y su significado tectónico: Mexico City, Universidad Nacional Autónoma de México, Ph.D dissertation, 190 pp.

Mendoza-Rosales, C.C., Centeno-García, E., Silva-Romo, G., Campos-Madrigal, E., Bernal, J.P., 2010, Barremian rift-related turbidites and alkaline volcanism in southern Mexico and their role in the opening of the Gulf of Mexico: Earth and Planetary Science Letters, 295(3–4), 419–434.

Michelin, H., 1840-47, Iconographie zoophytologique. Description par localités et terrains des polypiers fossiles de France: Paris, Bertrand, 348 pp.

Morycowa, E., 1964, Hexacoralla des couches de Grodziszcze (Néocomien Carpathes): Acta Palaeontologica Polonica, 9(1), 1–114.

Morycowa, E., 1971, Hexacorallia et Octocorallia du Crétacé inférieur de Rarau (Carpathes orientales roumaines): Acta Palaeontologica Polonica, 16(1–2), 1–149.

Morycowa, E., Masse, J.P., 1998, Les Scléractiniaires du Barrémien-Aptien inférieur de Provence (SE de la France): Geobios, 31(6), 725–766.

Morycowa, E., Roniewicz, E., 2016, Microstructural evidence of the stylophyllid affinity of the genus Cyathophora (Scleractinia, Mesozoic): Annales Societatis Geologorum Poloniae, 86(1), 1–16.

Orbigny, A. de, 1849, Note sur les polypiers fossiles: Paris, Masson, 12 pp.

Orbigny, A. de, 1850, Prodrôme de Paléontologie stratigraphique universelle des animaux mollusques et rayonnés (1–2): Paris, Masson, 394 pp., 428 pp.

Reyeros de Castillo, M.M., 1983, Corales de algunas formaciones cretacicas del estado de Oaxaca: Paleontología Mexicana, 47, 1–67.

Reyeros Navarro, M.M., 1963, Corales del Cretácico inferior de San Juan Raya, Estado de Puebla: Paleontología Mexicana, 17, 1–21.

Roniewicz, E., 1976, Les scléractiniaires du Jurassique supérieur de la Dobrogea centrale Roumanie: Palaeontologia Polonica, 34, 17–121.

Roniewicz, E., 2008, Kimmeridgian–Valanginian reef corals from the Moesian platform from Bulgaria: Annales Societatis Geologorum Poloniae, 78(2), 91–134.

Toula, F., 1884, Geologische Untersuchungen im westlichen Theile des Balkans und in den angrenzenden Gebiete (X) Von Pirot nach Sofia auf den Vitos, über Pernik nach Trn und über Stol nach Pirot: Sitzungsberichte der Mathematisch-Naturwissenschaftliche Classe der Kaiserlichen Akademie der Wissenschaften (1), 88, 1279–1348.

Toula, F., 1889, Geologische Untersuchungen im centralen Balkan: Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Physikalische Klasse, 55, 1–108.

Volz, W., 1903, Über eine Korallenfauna aus dem Neokom der Bukowina: Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 15(1), 9–30.

Zaman, S., Lathuilière, B., 2014, A lectotype for Cyathophora richardi Michelin 1843: Zootaxa, 3795(2), 198–200.

Manuscript received: June 8, 2020.

Corrected manuscript received: March 14, 2021.

Manuscript accepted: March 17, 2021.

Figure 1. Summarised ranges of all coral genera (dark green) and coral genera from the San Juan Raya area (light green). The blue line marks the percentage of San Juan Raya genera of the total number. A Hauterivian for the San Juan Raya coral fauna age seems to be possible. Ranges of genera mainly follow Löser (2016).

Figure 2. A, Study area, region of San Antonio Texcala; B, San Lucas Teteletitlán; C, San Juan Raya; D, La Compañía section.

Figure 3. Classification of the family Solenocoeniidae.

Figure 5. A–B, Cryptocoenia annae (Volz, 1903), IGM 9241.

A, transversal peel.

B, longitudinal thin section.

C–E, Cryptocoenia antiqua Orbigny, 1850, ERNO L-7118.

C, transversal thin section.

D, transversal thin section, detail.

E, longitudinal thin section.

F–H, Cryptocoenia desori (Koby, 1897), IGM 9256.

F, transversal thin section.

G, transversal thin section, detail.

H, longitudinal thin section.

Scale bar 1 mm.

Figure 6. A–C, Cryptocoenia incerta Achiardi, 1880, IGM 9221.

A, transversal thin section.

B, transversal thin section, detail.

C, longitudinal thin section.

D–E, Cryptocoenia jacobi (Alloiteau, 1948), ERNO L-7239

D, transversal thin section.

E, transversal thin section, detail.

F–G, Cryptocoenia regularis (de Fromentel, 1884), ERNO L-7243.

F, transversal thin section.

G, transversal thin section, detail.

H, Pentacoenia atempa (Felix, 1891), Lectotype of Cyathophora atempa, GPSL FLX 1994, coral surface.

Scale bar 1 mm.

Figure 8. A–C, Pentacoenia elegantula Orbigny, 1850, ERNO L-120601.

A, transversal thin section.

B, transversal thin section, detail.

C, longitudinal thin section.

D–F, Pentacoenia pulchella Orbigny, 1850, IGM 9239.

D, transversal thin section.

E, transversal thin section, detail.

F, longitudinal thin section.

G–I, Pentacoenia sp., IGM 9229.

G, transversal thin section.

H, transversal thin section, detail.

I, longitudinal thin section.

Scale bar 1 mm.

Figure 9. A–C, Pentacoenia tombecki de Fromentel, 1857, IGM 9272.

A, transversal thin section.

B, transversal thin section, detail.

C–D, Pentacoenia sp., IGM 9273.

C, transversal thin section.

D, transversal thin section, detail.

Scale bar 1 mm.

Figure 10. A, Pentacoenia sp., IGM 1195, coral surface.

B–C, Pentacoenia sp., IGM 9269.

B, transversal thin section.

C, transversal thin section, detail.

Scale bar 1 mm.

Figure 11. Stratigraphic distribution and commonness of species. The thickness of the bars indicates the number of localities in which the concerned species were found.

Figure 12. Correlation of provinces with joint species of the study area. The Correlation Ratio coefficient was applied; the graph is logarithmic. Provinces with less than three species are not shown.

Enlaces refback

  • No hay ningún enlace refback.

Paleontología Mexicana, Vol. 10, núm. 1, junio 2021, es una Publicación semestral  (junio y diciembre), editada por el Instituto de Geología de la Universidad Nacional Autónoma de México Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México, D.F., El editor en jefe es el Dr. Josep Anton Moreno Bedmar, CE josepamb@geologia.unam.mx y la editora técnica es la Mtra. Sandra Ramos, sandraram@geologia.unam.mx. Reserva de derechos al uso exclusivo No. 04-2012-081311041800-203, e-ISSN (versión electrónica): 2007-5189, ISSN-L: 0543-7652. http://www.ojs-igl.unam.mx/index.php/Paleontologia/index. Fecha de la última modificación, 15 de junio de 2021.


Las ideas aquí expresadas por los autores no necesariamente reflejan la postura del editor de la publicación Paleontología Mexicana. Se autoriza la reproducción total o parcial de los textos aquí publicados siempre y cuando se cite la fuente completa o la dirección electrónica de la publicación.